support@milkbranch.ru ENG
О портале Реклама в журнале Реклама на портале Архив номеров Свежий номер Подписка Электронная версия журнала О журнале

ООО "ЕКОКОМ"

Всероссийский форум Модернизация молочной отрасли
Просмотр выпуска
Выпуск №5 2024 г.


Архив номеров | Подписка

ЧИТАЙТЕ В СЛЕДУЮЩЕМ НОМЕРЕ
  • Козье молоко для сыроделия
  • Особенности ферментативной обработки молозива и активности развития в нем заквасочной микрофлоры
  • Молочное сырье в системе ветеринарной сертификации

    Подробный анонс

  • Видеоролик о журнале "Переработка молока"

    НОВОСТИ ПОРТАЛА

    КОНТАКТЫ
    Адрес редакции: 105066, Москва, Токмаков пер., д. 16, стр. 2, пом. 2, комн. 5

    Редакция:
    Телефон: +7 (499) 267-40-10
    E-mail: barteneva@milkbranch.ru

    Отдел подписки:
    Прямая линия:
    +7 (499) 267-40-10
    E-mail: podpiska@vedomost.ru

    Отдел рекламы:
    Прямая линия:
    +7 (499) 267-40-10, +7 (499) 267-40-15
    E-mail: reklama@vedomost.ru

    Вопросы работы портала:
    E-mail: support@milkbranch.ru

    Международная молочная неделя (17-21 июня 2024 года)

    ПОПУЛЯРНЫЕ ЗАПРОСЫ

    "Особенности технологии йогурта питьевого типа"

    Материал прочитан 10937 раз и оценен
    5
    Заслуженный работник пищевой индустрии РФ, к.т.н. З.С.Зобкова, к.т.н. Т.П.Фурсова, ГНУВНИМИ

    В настоящее время в России производят различные виды йогуртов. В зависимости от технологии, определяющей органолептические характеристики готового продукта, в том числе консистенцию, различают йогурты, приготовленные термостатным способом, с ненарушенным сгустком и плотной консистенцией, йогурты, выработанные резервуарным способом, с нарушенным сгустком и питьевые.

    Питьевой йогурт становится все более популярным продуктом. Его уникальные пищевые свойства с большим разнообразием вкусовых оттенков, практичная и привлекательная упаковка, более низкая стоимость по сравнению с другими видами способствуют реальному успеху у потребителя.

    За рубежом технология питьевого йогурта отличается тем, что продукт после сквашивания перемешивают, гомогенизируют, охлаждают до температуры хранения (5 °С) и разливают. В нашей стране при выработке йогурта питьевого типа продукт после сквашивания и перемешивания охлаждают частично в резервуаре или в потоке до температуры хранения (4±2 °С) и разливают. В этом случае молочно-белковый сгусток, подвергаемый разрушению в процессе охлаждения, плохо восстанавливает структуру и склонен к синерезису, поэтому тиксотропность (способность к восстановлению) и влагоудерживающая способность системы приобретают особое значение. Существует несколько путей повышения этих показателей.

    Один из них - выбор заквасок. Известно, что микроорганизмы, входящие в состав заквасок для йогурта, в зависимости от физиологических особенностей образуют при сквашивании молока молочно-белковые сгустки с разными типами консистенции: колющиеся или вязкие с различной степенью тягучести. Для питьевого йогурта применяют закваски вязкого типа с пониженной тенденцией к синерезису.

    Закваски, образующие сгустки с хорошей влагоудерживающей способностью, определяемой методом центрифугирования в течение 5 мин при факторе разделения F=1000, не должны выделять более 2,5 мл сыворотки на 10 мл закваски [1,4]. На структурные свойства сгустка также влияет температура культивирования заквасок. Оптимальные температуры сквашивания заквасок, состоящих из Str. Thermophilus и Lb. delbrueckii subsp. bulgaricus, - 40-45°С [1, 5]. Снижение температуры сквашивания до 32 °С вызывает избыточное образование экзополисахаридов и получение продукта, характеризующегося более выраженной стабильностью консистенции, но и излишней тягучестью [11].

    В промышленном производстве применяют следующие режимы сквашивания йогурта при использовании закваски, состоящей из Str. Thermophilus и Lb. delbrueckii subsp. bulgaricus: в России температура сквашивания - 40-42°С, продолжительность сквашивания -3-4 ч, количество закваски - 3-5 %; в странах ЕС соответственно 37-46 °С, 2-6 ч, 0,01-8 % (чаще 2-3 %) или 30-32 °С, 8-18ч,0,01-1 % [1, 6, 7].

    Культуры Lb. delbrueckii subsp. bulgaricus, Str. subsp. Thermophilus способны образовывать внеклеточные полимеры, являющиеся углеводбелковыми комплексами. Количество этих полимеров возрастает при более низких температурах сквашивания или под действием неблагоприятных факторов. Загущающая способность полисахаридов, продуцируемых Str.thermophilus. отличается от таковой, продуцируемой Lb. delbrueckii subsp. bulgaricus.

    Слизистые вещества, вырабатываемые разными штаммами Str. Thermophilus и Lb. delbrueckii subsp. bulgaricus, могут иметь различный химический состав. В полисахаридах Lb. delbrueckii subsp. bulgaricus присутствуют арабиноза, манноза, глюкоза, галактоза, которые соединены линеарными или разветвленными связями. Такие полимеры химически подобны ß-глкжанам, входящим в состав клеточных мембран. Некоторые бактерии Str. Thermophilus продуцируют тетрасахариды, состоящие из галактозы, глюкозы и N-ацетил-галактозамина с молекулярным весом 1 млн, обладающие загущающими свойствами. Присутствие этих слизистых веществ способствует улучшению однородности и повышению эластичности сгустка [5].

    На основании комплексных исследований химического состава и реологических свойств сгустка предполагается, что повышение его эластичности, образованного вязкими штаммами, связано с включением прослоек экзополисахаридов в казеиновые матрицы, увеличивающих таким образом расстояние между казеиновыми мицеллами, что вызывает повышение влагоудерживающей способности и получение мягкой текстуры йогурта [9].

    В то же время замечено, что культуры микроорганизмов, вырабатывающие экзополисахариды в одинаковых концентрациях, образовывали сгустки с различными органолептическими и реологическими свойствами. Так, более слизистые культуры образовывали сгустки с более низкой вязкостью, чем менее слизистые культуры при одинаковом количестве экзополисахаридов. Различия в консистенции йогурта объясняются не количеством экзополисахаридов, а характером образованной пространственной белковой структуры. Чем обширнее, разветвленнее сеть белковых цепей и полисахаридов, продуцируемых культурами микроорганизмов, тем вязкость сгустка выше [8,12].

    Учитывая, что не все слизистые штаммы обладают способностью повышать вязкость сгустка, на основании оценки кривых течения, полученных методами вискозиметрии, различают слизистые и загущающие культуры [9, 10]. При производстве йогурта питьевого типа молочно-белковый сгусток претерпевает наиболее значительное механическое воздействие и поэтому нуждается в особом подходе, а именно: требуется достаточно высокая вязкость сгустка после сквашивания, молочно-белковый сгусток должен быть достаточно устойчив к разрушению, иметь способность к максимальному восстановлению структуры после разрушения и удерживать сыворотку в течение всего срока хранения.

    Структурированные системы, возникающие в молоке присквашивании заквасками загущающего типа, содержат как необратимо разрушающиеся связи конденсационного типа, обладающие большой прочностью, придающие структуре упругохрупкие свойства, так и тиксотропно-обратимые связи коагуляционного типа, имеющие небольшую прочность и придающие эластичность и пластичность [3]. В то же время, судя по степени восстановления разрушенной структуры, составляющей для различных заквасок от 1,5 до 23 %, удельный вес связей тиксотропного характера в этом случае все же недостаточно высок.

    Другим путем получения однородной, нерасслаивающейся. вязкой консистенции йогурта, обладающей повышенной тиксотропностью, влагоудерживающей способностью, устойчивостью в хранении, является использование различных добавок.

    Применение в определенных концентрациях добавок, содержащих белок (сухое молоко, молочно-белковые концентраты, соевый белок и т.д.), приводит "увеличению содержания сухих веществ и (в зависимости от вида добавки) повышению плотности, вязкости, снижению тенденции к синерезису. Однако получить существенное увеличение тиксотропности сгустка они не позволяют.

    При производстве йогурта возможно также использование стабилизаторов консистенции. В этом случае необходимо учитывать ряд закономерностей.

    Известно, что высокомолекулярные вещества (ВМВ) - гидроколлоиды, входящие в состав стабилизационных систем, применяемых при производстве йогурта, образуют гели, проявляющие различные механические свойства в зависимости от типов связей, возникающих между макромолекулами полимера в растворе. Растворы ВМВ, в которых межмолекулярные связи чрезвычайно непрочны и количество постоянных связей мало, способны течь и не образуют прочной структуры в широком диапазоне концентраций и температур (крахмал, камеди).

    Растворы высокомолекулярных веществ с большим количеством связей между макромолекулами дают жесткую пространственную сетку при небольшом увеличении концентрации, структура которой сильно зависит от температуры (желатин, низкометоксилированный пектин, агар, каррагинан). Наиболее низкой температурой гелеобразования обладает желатин. Его 10 %-ный раствор переходит в студень при температуре около 22 °С [2]. Смеси первых и вторых составляются с целью повышения их функциональности, т.е. проявления в той или иной степени свойств обеих групп.

    Известно, что понижение температуры вызывает возникновение между молекулами полимера (гидроколлоида) связей, приводящих к структурированию. Постоянные связи между молекулами в растворах ВМВ могут образовываться в результате взаимодействия полярных групп, несущих электрический заряд различного знака, а также за счет химических связей. Структурирование -процесс появления и постепенного упрочнения пространственной сетки. При более высоких температурах из-за интенсивности микроброуновского движения число и длительность существования связей между макромолекулами невелики. Чем ниже температура, тем более расширяется и сдвигается в сторону большей прочности спектр контактов между макромолекулами.

    Если образовавшиеся связи (коагуляционная структура} не слишком прочны, то механическое воздействие (перемешивание) может разрушить структуру. Но при устранении внешнего воздействия растворы обычно снова восстанавливают свою структуру и застудневают. Однако когда система образована более прочными связями (конденсационная структура) и представляет собой одну сплошную пространственную сетку, сильные механические воздействия вызывают ее необратимое разрушение [2].

    Учитывая изложенное, авторами статьи проведена сравнительная оценка тиксотропных свойств и влагоудерживающей способности питьевого йогурта, выработанного с рядом стабилизаторов консистенции различного состава.

    Тиксотропные свойства сгустков и их способность оказывать сопротивление механическому воздействию характеризует величина изменения относительной вязкости, соответствующая степени восстановления разрушенной структуры.

    В таблице приведены средние величины изменения относительной вязкости (Во5*/Во40*) йогурта с некоторыми стабилизаторами и без них (контрольный образец) при температуре розлива 40 и 5 °С. Номера образцов даны в порядке убывания их тиксотропных свойств.

    Из данных, приведенных в таблице. следует, что применение стабилизаторов вызывает увеличение степени восстановления разрушенной структуры (за исключением модифицированного фосфатного крахмала) на 3,5-43,5 % при розливе йогурта при температуре 5 °С, применяемой, как правило, при производстве продукта питьевого типа {охлаждаемого в потоке до температуры хранения).

    Наибольшая степень восстановления структуры сгустка наблюдалась у образцов продукта, выработанных с многокомпонентными смесями, содержащими гелеобразователи и загустители, которая составляла от 47 до 71 %, что превышало аналогичный показатель для контрольного образца на 19,5-43,5%. Более обратимые после механического разрушения структуры, очевидно, образованы связями коагуляционного характера вследствие значительной доли в композиции стабилизационных смесей загустителей.

    Из полученных данных следует, что многокомпонентные стабилизационные системы, имеющие в своем составе гелеобразователи (желатин, каррагинан, агар-агар) и загустители (модифицированный крахмал, гуаровая камедь), обладающие вследствие этого более разнообразными физико-химическими свойствами и более широким спектром совместимых механизмов гелеобразования, создают в йогурте структуры, соответственно проявляющие в большей степени свойства обеих групп, т.е. большую устойчивость к разрушению и большую способность к восстановлению по сравнению с однокомпонентными стабилизаторами (желатин, модифицированный крахмал).

    Влагоудерживающая способность образцов йогурта, выработанного со стабилизирующими добавками (за исключением фосфатного крахмала, образцы № 1-7), характеризовалась отсутствием или отделением не более 10 % сыворотки при центрифугировании пробы продукта в течение 30 мин при факторе разделения, равном 1000.

    Внесение в достаточных количествах гидроколлоидов, обладающих способностью стабилизировать СМХ и повышать влагоудерживающую способность йогурта в процессе хранения, позволяло при условии обеспечения микробиологической чистоты увеличить срок хранения до 21 дня, в течение которого консистенция продукта сохранялась без ухудшения первоначального качества. Исключение составляли контрольные образцы и образцы продукта, выработанные с фосфатным крахмалом, в которых после 2 недель хранения отмечалось наличие сыворотки на поверхности продукта и разжижение консистенции. Образцы йогурта, выработанные с желатином, в конце хранения также получили неудовлетворительные оценки консистенции, которая была признана нехарактерной для продукта питьевого типа.

    Таким образом, наилучшие органолептические, структурно-механические характеристики и влагоудерживающую способность питьевого йогурта на протяжении длительного срока хранения обеспечивали многокомпонентные стабилизирующие добавки с выраженными загущающими свойствами. При выборе стабилизирующей добавки для йогурта питьевого типа одним из основных критериев является тиксотропность (степень восстановления разрушенной структуры), характеризующаяся величиной потерь эффективной вязкости при розливе молочно-белкового сгустка, охлажденного до температуры хранения готового продукта.

    № образца Стабилизатор (состав) Среднее значение относительной вязкости продукта (Во5*/Во40*) Средняя величина потерь эффектив­ной вязкости (Во*) при розливе про­дукта при 5°'С, %
    Розлив при 40°С Розлив при 5°С
    1 Хамульсион RABB (желатин, гуаровая камедь Е412, модифицированный крахмал) 0,94 0,71 29
    2 Турризин РМ (желатин, модифицированный крахмал Е1422. каррагинан Е407, агар-агар Е406) 0,92 0,54 46
    3 Палсгаард 5805 (желатин, модифицированный крахмал, моно-, диглицериды Е471) 0,88 0,47 53
    4 Гринстэд SB 251 (желатин, пектин Е440, модифицированный крахмал Е1422, нативный крахмал) 0,9 0,42 58
    5 Желатин П-7 0,89 0,415 58,5
    6 Лигомм AYS 63 (желатин, низкометоксилированный пектин Е440) 0,895 0,405 59,5
    7 Хамульсион SM (желатин, гуаровая камедь Е412) 0,91 0,31 69
    8 Контроль (без стабилизатора) 0,85 0,275 72,5
    9 Крахмал фосфатный 0,86 0,21 79

    Примечание: Во5* - коэффициент эффективной вязкости, Па·с (при значении скорости сдвига γ= 1 с-1) продукта, охлажденного после сквашивания и разлитого при температуре хранения 5 °С; Во40 - коэффициент эффективной вязкости. Па·с (при значении скорости сдвига γ= 1 с-1) продук­та, разлитого при температуре сквашивания 40 °С. Измерения во всех образцах проводили при 18°С. Стабилизирующее добавка вносили в дозах, подобранных на основании органолептической оценки готового продукта, рекомендаций изготовителей, а также результатов исследований струк­турно-механических характеристик (СМХ) готового продукта.



    ЛИТЕРАТУРА

    1. Банникова Л.А., Королева Н.С., Семенихина В.Ф. Микробиологические основы молочного производства. -М.:Агропромиздат. 1987.
    2. Воюцкий С.С. Курс коллоидной химии-М-Химия, 1964.
    3. Горбатова К.К. Биохимия молока и молочных продуктов.-М..'Легкая и пищевая промышленность. 1984.
    4. Сборник инструкций по селекции молочнокислых бактерий и подбору заквасок для кисломолочных продуктов -М.:ВНИМИ, 1985.
    5. Dellaglio F. Starters for fermented milks. Sections 3//Bull. of IDF. 1988. № 227. Ch.11.
    6. Puhan Z. Overview of current availability and technology of fermented milks in IDF member countries//Bulletin of the IDF. 1992. № 277.
    7. Puhan Z. Results of the Questionnaire 1785B. "Fermented Milk"//Bulletin of the IDF. 1988. № 227.
    8. Salvadori Bruna Bianchi. Lactis acid bacteria, biochemical characteristics affecting the texture of fermented milks//IDF. Symposium on "Texture of fermented milk products and dairy desserts". Abstract book.: Italy, Vicenza. 1997, 5-6 may.
    9. Sebastiani H., Gelsomino R., Walser H. Cultures for the improvement of texture in quarg//IDF. Symposium on "Texture of fermented milk products and dairy desserts". Abstract book.: Italy, Vicenza. 1997, 5-6 may.
    10. Skriver A.Texture characterisation of yoghurt fermented with different bacteria cultures/ZIDF. Symposium on "Texture of fermented milk products and dairy desserts". Abstract book.: Italy, Vicenza. 1997. 5-6 may
    11. Speck M.L. Yoghurt qualities affected by starters and processings/Dairy Ind.lnt. 1979. V. 44, № 3.
    12. Zoon P.JM.E. Van Marie, K.C.De Kruif. Relation between the consistency of stirred yoghurt and the structure of the yoghurt gel// Symposium on "Texture of fermented milk products and dairy desserts". Abstract book.: Italy, Vicenza. 1997.5-6 may.


    Перспективные направления  переработки вторичных молочных ресурсовПерспективные направления переработки вторичных молочных ресурсов
    Мировое производство всех видов молока оценивается в 626 млн т c приростом 1,5 % в год. Производс...
    Новые функциональные  продукты на основе  козьего молокаНовые функциональные продукты на основе козьего молока
    Продукты на основе козьего молока вырабатываются из смеси козьего молока, оливкового масла, рыбье...
    Приоритет – организация рентабельного производстваПриоритет – организация рентабельного производства
    ЗАО «Молмаш Комплект» занимается комплексной поставкой и вводом в эксплуатацию линий и молочных зав...
    Логистика молочного дела.  Прогностический взглядЛогистика молочного дела. Прогностический взгляд
    К настоящему времени логистика как наука организационно и научно-методически сложилась и имеет мест...
    Влияние упаковочного материала на качество фасованных сыров
    Увеличение объемов фасованной продукции, в том числе сыров, на торговой полке является устойчивым тр...
    Как упаковать молоко ?Как упаковать молоко ?
    Какие бы новые упаковочные решения, материалы ни появлялись на рынке молочных продуктов, они обязат...
    Совмещенная мойка и дезинфекция оборудованияСовмещенная мойка и дезинфекция оборудования
    В процессе производства масла, спредов и другой высокожирной продукции ее составные части остаются н...
    Биоразлагаемая упаковка – путь к улучшению экологииБиоразлагаемая упаковка – путь к улучшению экологии
    Учитывая современную экологическую ситуацию в мире, актуальной задачей является создание биоразлага...
    ПОИСК ПО ПОРТАЛУ
      Карта сайта

    Национальный Молочный Конгресс, проводимый РСПМО 29-31 мая 2024 г. в Карелии

    ОБЗОР РЫНКА
    Зарегистрированных посетителей: 11876


    АСУ ТП и MES для молокоперерабатывающего завода

    ПОПУЛЯРНЫЕ ЗАПРОСЫ

    Еще по теме "Плотность йогурта"

    Настоящим, в соответствии с Федеральным законом № 152-ФЗ «О персональных данных» от 27.07.2006 года, Вы подтверждаете свое согласие на обработку компанией ООО «Концепция связи XXI век» персональных данных: сбор, систематизацию, накопление, хранение, уточнение (обновление, изменение), использование, передачу в целях продвижения товаров, работ, услуг на рынке путем осуществления прямых контактов с помощью средств связи, продажи продуктов и услуг на Ваше имя, блокирование, обезличивание, уничтожение.

    Компания ООО «Концепция связи XXI век» гарантирует конфиденциальность получаемой информации. Обработка персональных данных осуществляется в целях эффективного исполнения заказов, договоров и иных обязательств, принятых компанией в качестве обязательных к исполнению.

    В случае необходимости предоставления Ваших персональных данных правообладателю, дистрибьютору или реселлеру программного обеспечения в целях регистрации программного обеспечения на Ваше имя, Вы даёте согласие на передачу своих персональных данных.

    Компания ООО «Концепция связи XXI век» гарантирует, что правообладатель, дистрибьютор или реселлер программного обеспечения осуществляет защиту персональных данных на условиях, аналогичных изложенным в Политике конфиденциальности персональных данных.

    Настоящее согласие распространяется на следующие персональные данные: фамилия, имя и отчество, место работы, должность, адрес электронной почты, почтовый адрес доставки заказов, контактный телефон, платёжные реквизиты. Срок действия согласия является неограниченным. Вы можете в любой момент отозвать настоящее согласие, направив письменное уведомление на адрес: podpiska@vedomost.ru с пометкой «Отзыв согласия на обработку персональных данных».

    Обращаем Ваше внимание, что отзыв согласия на обработку персональных данных влечёт за собой удаление Вашей учётной записи с соответствующего Интернет-сайта и/или уничтожение записей, содержащих Ваши персональные данные, в системах обработки персональных данных компании ООО «Концепция связи XXI век», что может сделать невозможным для Вас пользование ее интернет-сервисами.

    Давая согласие на обработку персональных данных, Вы гарантируете, что представленная Вами информация является полной, точной и достоверной, а также что при представлении информации не нарушаются действующее законодательство Российской Федерации, законные права и интересы третьих лиц. Вы подтверждаете, что вся предоставленная информация заполнена Вами в отношении себя лично.

    Настоящее согласие действует в течение всего периода хранения персональных данных, если иное не предусмотрено законодательством Российской Федерации.

    Принимаю условия соглашения
    support@milkbranch.ru
    © 2007-2024. Издательский дом "Отраслевые Ведомости". Все права защищены
    Копирование информации данного сайта допускается только при условии установки ссылки на оригинальный материал
    Fri, 26 Apr 2024 15:00:35